Monday, 31 July 2017

Mechanical Engineering Designing

Mechanical Engineering Designing

The steam engine, a major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This beam engine is on display in the Technical University of Madrid.

Engineering is the application of mathematics, as well as scientific, economic, social, and practical knowledge in order to invent, innovate, design, build, maintain, research, and improve structures, machines, tools, systems, components, materials, processes, solutions, and organizations.

The discipline of engineering is extremely broad and encompasses a range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied science, technology and types of application.

The term Engineering is derived from the Latin ingenium, meaning "cleverness" and ingeniare, meaning "to contrive, devise".[1]

The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET)[2] has defined "engineering" as:

The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation or safety to life and property.[3][4]

Main article: History of engineering Relief map of the Citadel of Lille, designed in 1668 by Vauban, the foremost military engineer of his age.

Engineering has existed since ancient times as humans devised fundamental inventions such as the wedge, lever, wheel and pulley. Each of these inventions is essentially consistent with the modern definition of engineering.

The term engineering is derived from the word engineer, which itself dates back to 1390 when an engine'er (literally, one who operates an engine) originally referred to "a constructor of military engines."[5] In this context, now obsolete, an "engine" referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.

The word "engine" itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning "innate quality, especially mental power, hence a clever invention."[6]

Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering[4] entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the discipline of military engineering.

The Ancient Romans built aqueducts to bring a steady supply of clean fresh water to cities and towns in the empire.

The Pharos of Alexandria, the pyramids in Egypt, the Hanging Gardens of Babylon, the Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, Teotihuacán and the cities and pyramids of the Mayan, Inca and Aztec Empires, the Great Wall of China, the Brihadeeswarar Temple of Thanjavur and Indian Temples, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.

The earliest civil engineer known by name is Imhotep.[4] As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC.[7]Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism, the first known mechanical computer,[8][9] and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes' inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.[10]

Chinese, Greek, Roman and Hungarian armies employed complex military machines and inventions such as artillery which was developed by the Greeks around the 4th century B.C.,[11] the trireme, the ballista and the catapult. In the Middle Ages, the trebuchet was developed.

The first steam engine was built in 1698 by Thomas Savery.[12] The development of this device gave rise to the Industrial Revolution in the coming decades, allowing for the beginnings of mass production.

With the rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the mechanic arts became incorporated into engineering.

The International Space Station represents a modern engineering challenge from many disciplines.

The inventions of Thomas Newcomen and the Scottish engineer James Watt gave rise to modern mechanical engineering. The development of specialized machines and machine tools during the industrial revolution led to the rapid growth of mechanical engineering both in its birthplace Britain and abroad.[4]

Structural engineers investigating NASA's Mars-bound spacecraft, the Phoenix Mars Lander

John Smeaton was the first self-proclaimed civil engineer and is often regarded as the "father" of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbours, and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of 'hydraulic lime' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. His lighthouse remained in use until 1877 and was dismantled and partially rebuilt at Plymouth Hoe where it is known as Smeaton's Tower. He is important in the history, rediscovery of, and development of modern cement, because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to the invention of Portland cement.

The United States census of 1850 listed the occupation of "engineer" for the first time with a count of 2,000.[13] There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890 there were 6,000 engineers in civil, mining, mechanical and electrical.[14]

There was no chair of applied mechanism and applied mechanics established at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier.[15]

The foundations of electrical engineering in the 1800s included the experiments of Alessandro Volta, Michael Faraday, Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell's equations) and Heinrich Hertz in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty.[4]Chemical engineering developed in the late nineteenth century.[4] Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants.[4] The role of the chemical engineer was the design of these chemical plants and processes.[4]

The Falkirk Wheel in Scotland

Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.[16]

The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Josiah Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.[17]

Only a decade after the successful flights by the Wright brothers, there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.

In 1990, with the rise of computer technology, the first search engine was built by computer engineer Alan Emtage.

For a topical guide to this subject, see Outline of engineering § Branches of engineering. The design of a modern auditorium involves many branches of engineering, including acoustics, architecture, and civil engineering. Hoover Dam

Engineering is a broad discipline which is often broken down into several sub-disciplines. These disciplines concern themselves with differing areas of engineering work. Although initially an engineer will usually be trained in a specific discipline, throughout an engineer's career the engineer may become multi-disciplined, having worked in several of the outlined areas. Engineering is often characterized as having four main branches:[18][19][20]chemical engineering, civil engineering, electrical engineering, and mechanical engineering.

Main article: Chemical engineering

Chemical engineering is the application of physics, chemistry, biology, and engineering principles in order to carry out chemical processes on a commercial scale, such as petroleum refining, microfabrication, fermentation, and biomolecule production.

Main article: Civil engineering

Civil engineering is the design and construction of public and private works, such as infrastructure (airports, roads, railways, water supply, and treatment etc.), bridges, dams, and buildings.[21][22] Civil engineering is traditionally broken into a number of sub-disciplines, including structural engineering, environmental engineering, and surveying. It is traditionally considered to be separate from military engineering.[23]

Main article: Electrical engineering

Electrical engineering is the design, study, and manufacture of various electrical and electronic systems, such as electrical circuits, generators, motors, electromagnetic/electromechanical devices, electronic devices, electronic circuits, optical fibers, optoelectronic devices, computer systems, telecommunications, instrumentation, controls, and electronics.

Main article: Mechanical engineering

Mechanical engineering is the design and manufacture of physical or mechanical systems, such as power and energy systems, aerospace/aircraft products, weapon systems, transportation products, engines, compressors, powertrains, kinematic chains, vacuum technology, vibration isolation equipment, manufacturing, and mechatronics.

Main article: List of engineering branches

Beyond these "Big Four", a number of other branches are recognized. Historically, naval engineering and mining engineering were major branches. Other engineering fields sometimes included as major branches are manufacturing engineering, acoustical engineering, corrosion engineering, instrumentation and control, aerospace, automotive, computer, electronic, petroleum, environmental, systems, audio, software, architectural, agricultural, biosystems, biomedical,[24]geological, textile, industrial, materials,[25] and nuclear engineering.[26] These and other branches of engineering are represented in the 36 licensed member institutions of the UK Engineering Council.

New specialties sometimes combine with the traditional fields and form new branches – for example, Earth systems engineering and management involves a wide range of subject areas including anthropology, engineering studies, environmental science, ethics and philosophy of engineering.

One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as Professional Engineer, Chartered Engineer, Incorporated Engineer, Ingenieur, European Engineer, or Designated Engineering Representative. In the UK many skilled trades are called "Engineer" including gas, telephone, photocopy, maintenance, plumber-heating, drainage, sanitary, auto mechanic, TV, Refrigerator, electrician, washing machine, TV antenna installer (satellite) and many others.

Design of a turbine requires collaboration of engineers from many fields, as the system involves mechanical, electro-magnetic and chemical processes. The blades, rotor and stator as well as the steam cycle all need to be carefully designed and optimized.

Engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. More than ever, engineers are now required to have a proficient knowledge of relevant sciences for their design projects. As a result, many engineers continue to learn new material throughout their career.

If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The crucial and unique task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build a technically successful product, rather, it must also meet further requirements.

Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productivity, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.

A general methodology and epistemology of engineering can be inferred from the historical case studies and comments provided by Walter Vincenti.[27] Though Vincenti's case studies are from the domain of aeronautical engineering, his conclusions can be transferred into many other branches of engineering, too.

According to Billy Vaughn Koen, the "engineering method is the use of heuristics to cause the best change in a poorly understood situation within the available resources." Koen argues that the definition of what makes one an engineer should not be based on what he produces, but rather how he goes about it.[28]

A drawing for a booster engine for steam locomotives. Engineering is applied to design, with emphasis on function and the utilization of mathematics and science.

Engineers use their knowledge of science, mathematics, logic, economics, and appropriate experience or tacit knowledge to find suitable solutions to a problem. Creating an appropriate mathematical model of a problem allows them to analyze it (sometimes definitively), and to test potential solutions.

Usually, multiple reasonable solutions exist, so engineers must evaluate the different design choices on their merits and choose the solution that best meets their requirements. Genrich Altshuller, after gathering statistics on a large number of patents, suggested that compromises are at the heart of "low-level" engineering designs, while at a higher level the best design is one which eliminates the core contradiction causing the problem.

Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected.

Engineers take on the responsibility of producing designs that will perform as well as expected and will not cause unintended harm to the public at large. Engineers typically include a factor of safety in their designs to reduce the risk of unexpected failure. However, the greater the safety factor, the less efficient the design may be.

The study of failed products is known as forensic engineering and can help the product designer in evaluating his or her design in the light of real conditions. The discipline is of greatest value after disasters, such as bridge collapses, when careful analysis is needed to establish the cause or causes of the failure.

A computer simulation of high velocity air flow around a Space Shuttle orbiter during re-entry. Solutions to the flow require modelling of the combined effects of fluid flow and the heat equations.

As with all modern scientific and technological endeavors, computers and software play an increasingly important role. As well as the typical business application software there are a number of computer aided applications (computer-aided technologies) specifically for engineering. Computers can be used to generate models of fundamental physical processes, which can be solved using numerical methods.

One of the most widely used design tools in the profession is computer-aided design (CAD) software like CATIA, Autodesk Inventor, DSS SolidWorks or Pro Engineer which enables engineers to create 3D models, 2D drawings, and schematics of their designs. CAD together with digital mockup (DMU) and CAE software such as finite element method analysis or analytic element method allows engineers to create models of designs that can be analyzed without having to make expensive and time-consuming physical prototypes.

These allow products and components to be checked for flaws; assess fit and assembly; study ergonomics; and to analyze static and dynamic characteristics of systems such as stresses, temperatures, electromagnetic emissions, electrical currents and voltages, digital logic levels, fluid flows, and kinematics. Access and distribution of all this information is generally organized with the use of product data management software.[29]

There are also many tools to support specific engineering tasks such as computer-aided manufacturing (CAM) software to generate CNC machining instructions; manufacturing process management software for production engineering; EDA for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and AEC software for civil engineering.

In recent years the use of computer software to aid the development of goods has collectively come to be known as product lifecycle management (PLM).[30]

Robotic Kismet can produce a range of facial expressions.

The engineering profession engages in a wide range of activities, from large collaboration at the societal level, and also smaller individual projects. Almost all engineering projects are obligated to some sort of financing agency: a company, a set of investors, or a government. The few types of engineering that are minimally constrained by such issues are pro bono engineering and open-design engineering.

By its very nature engineering has interconnections with society, culture and human behavior. Every product or construction used by modern society is influenced by engineering. The results of engineering activity influence changes to the environment, society and economies, and its application brings with it a responsibility and public safety.

Engineering projects can be subject to controversy. Examples from different engineering disciplines include the development of nuclear weapons, the Three Gorges Dam, the design and use of sport utility vehicles and the extraction of oil. In response, some western engineering companies have enacted serious corporate and social responsibility policies.

Engineering is a key driver of innovation and human development. Sub-Saharan Africa, in particular, has a very small engineering capacity which results in many African nations being unable to develop crucial infrastructure without outside aid.[citation needed] The attainment of many of the Millennium Development Goals requires the achievement of sufficient engineering capacity to develop infrastructure and sustainable technological development.[31]

Radar, GPS, lidar, ... are all combined to provide proper navigation and obstacle avoidance (vehicle developed for 2007 DARPA Urban Challenge)

All overseas development and relief NGOs make considerable use of engineers to apply solutions in disaster and development scenarios. A number of charitable organizations aim to use engineering directly for the good of mankind:

Engineering companies in many established economies are facing significant challenges with regard to the number of professional engineers being trained, compared with the number retiring. This problem is very prominent in the UK where engineering has a poor image and low status.[33] There are many negative economic and political issues that this can cause, as well as ethical issues[34] It is widely agreed that the engineering profession faces an "image crisis",[35] rather than it being fundamentally an unattractive career. Much work is needed to avoid huge problems in the UK and other western economies.

Main article: Engineering ethics

Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. The National Society of Professional Engineers code of ethics states:

Engineering is an important and learned profession. As members of this profession, engineers are expected to exhibit the highest standards of honesty and integrity. Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct.[36]

In Canada, many engineers wear the Iron Ring as a symbol and reminder of the obligations and ethics associated with their profession.[37]

Engineers, scientists and technicians at work on target positioner inside National Ignition Facility (NIF) target chamber

Scientists study the world as it is; engineers create the world that has never been.

— Theodore von Kármán[38][39][40]

There exists an overlap between the sciences and engineering practice; in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations.[citation needed]

Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists or more precisely "engineering scientists".[citation needed]

In the book What Engineers Know and How They Know It,[41] Walter Vincenti asserts that engineering research has a character different from that of scientific research. First, it often deals with areas in which the basic physics or chemistry are well understood, but the problems themselves are too complex to solve in an exact manner.

There is a "real and important" difference between engineering and physics as similar to any science field has to do with technology.[42][43] Physics is an exploratory science that seeks knowledge of principles while Engineering uses knowledge for practical applications of principles. The former equates an understanding into a mathematical principle while the latter measures variables involved and creates technology.[44][45][46] For technology, physics is an auxiliary and in a way technology is considered as applied physics.[47] Though Physics and Engineering are interrelated it doesn't mean a Physicist is sufficient where an Engineer is required. For this mobility, a physicist to work as an engineer requires additional and relevant specialized training.[48] Physicists and engineers engage in different lines of work.[49] But PhD physicists who specialize in sectors of technology and applied science are titled as Technology officer, R&D Engineers and System Engineers.[50] Though as an engineer, role of a physicist is limited.[51] Physicists in their field, work in theoretical analysis and experimental research.[52]

An example of this is the use of numerical approximations to the Navier–Stokes equations to describe aerodynamic flow over an aircraft, or the use of Miner's rule to calculate fatigue damage. Second, engineering research employs many semi-empirical methods that are foreign to pure scientific research, one example being the method of parameter variation.[citation needed]

As stated by Fung et al. in the revision to the classic engineering text Foundations of Solid Mechanics:

Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress innovation and invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a complex system, device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what already exists. Since a design has to be realistic and functional, it must have its geometry, dimensions, and characteristics data defined. In the past engineers working on new designs found that they did not have all the required information to make design decisions. Most often, they were limited by insufficient scientific knowledge. Thus they studied mathematics, physics, chemistry, biology and mechanics. Often they had to add to the sciences relevant to their profession. Thus engineering sciences were born.[53]

Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability, and constructability or ease of fabrication as well as the environment, ethical and legal considerations such as patent infringement or liability in the case of failure of the solution.[citation needed]

Leonardo da Vinci, seen here in a self-portrait, has been described as the epitome of the artist/engineer.[54] He is also known for his studies on human anatomy and physiology.

The study of the human body, albeit from different directions and for different purposes, is an important common link between medicine and some engineering disciplines. Medicine aims to sustain, repair, enhance and even replace functions of the human body, if necessary, through the use of technology.

Genetically engineered mice expressing green fluorescent protein, which glows green under blue light. The central mouse is wild-type.

Modern medicine can replace several of the body's functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example, brain implants and pacemakers.[55][56] The fields of bionics and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems.

Conversely, some engineering disciplines view the human body as a biological machine worth studying and are dedicated to emulating many of its functions by replacing biology with technology. This has led to fields such as artificial intelligence, neural networks, fuzzy logic, and robotics. There are also substantial interdisciplinary interactions between engineering and medicine.[57][58]

Both fields provide solutions to real world problems. This often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both.

Medicine, in part, studies the function of the human body. The human body, as a biological machine, has many functions that can be modeled using engineering methods.[59]

The heart for example functions much like a pump,[60] the skeleton is like a linked structure with levers,[61] the brain produces electrical signals etc.[62] These similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of biomedical engineering that uses concepts developed in both disciplines.

Newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems.[59]

There are connections between engineering and art;[63] they are direct in some fields, for example, architecture, landscape architecture and industrial design (even to the extent that these disciplines may sometimes be included in a university's Faculty of Engineering); and indirect in others.[63][64][65][66]

The Art Institute of Chicago, for instance, held an exhibition about the art of NASA's aerospace design.[67]Robert Maillart's bridge design is perceived by some to have been deliberately artistic.[68] At the University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering.[64][69]

Among famous historical figures, Leonardo da Vinci is a well-known Renaissance artist and engineer, and a prime example of the nexus between art and engineering.[54][70]

Business Engineering deals with the relationship between professional engineering, IT systems, business administration and change management. Engineering management or "Management engineering" is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for management-focused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles. During an engineering management course, students will develop industrial engineering skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of industrial and organizational psychology principles and methods. Professional engineers often train as certified management consultants in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex business transformation or Business process management initiatives in aerospace and defence, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical & electronics, power distribution & generation, utilities and transportation systems. This combination of technical engineering practice, management consulting practice, industry sector knowledge, and change management expertise enables professional engineers who are also qualified as management consultants to lead major business transformation initiatives. These initiatives are typically sponsored by C-level executives.

In other fields not associated with professional engineering the words "engineer" or "engineering" has been adapted to mean design, develop, contrive, manipulate, implement an outcome.[citation needed] In political science, the term engineering has been borrowed for the study of the subjects of social engineering and political engineering, which deal with forming political and social structures using engineering methodology coupled with political science principles. Financial engineering has similarly borrowed the term.

Main article: Outline of engineering Lists Glossaries Related subjects   (Redirected from Mechanical Engineering)

Mechanical Engineering, is the discipline that applies engineering, physics, and materials science principles to design, analyze, manufacture, and maintain mechanical systems. It is the branch of engineering that involves the design, production, and operation of machinery.[1][2] It is one of the oldest and broadest of the engineering disciplines.

The mechanical engineering field requires an understanding of core areas including mechanics, kinematics, thermodynamics, materials science, structural analysis, and electricity. In addition to these core principles, mechanical engineers use tools such as computer-aided design (CAD), and product life cycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, weapons, and others.

Mechanical engineering emerged as a field during the Industrial Revolution in Europe in the 18th century; however, its development can be traced back several thousand years around the world. In the 19th century, developments in physics led to the development of mechanical engineering science. The field has continually evolved to incorporate advancements; today mechanical engineers are pursuing developments in such areas as composites, mechatronics, and nanotechnology. It also overlaps with aerospace engineering, metallurgical engineering, civil engineering, electrical engineering, manufacturing engineering, chemical engineering, industrial engineering, and other engineering disciplines to varying amounts. Mechanical engineers may also work in the field of biomedical engineering, specifically with biomechanics, transport phenomena, biomechatronics, bionanotechnology, and modeling of biological systems.

W16 engine of the Bugatti Veyron. Mechanical engineers design engines, power plants, other machines... ...structures, and vehicles of all sizes.

The application of mechanical engineering can be seen in the archives of various ancient and medieval societies. In ancient Greece, the works of Archimedes (287–212 BC) influenced mechanics in the Western tradition and Heron of Alexandria (c. 10–70 AD) created the first steam engine (Aeolipile).[3] In China, Zhang Heng (78–139 AD) improved a water clock and invented a seismometer, and Ma Jun (200–265 AD) invented a chariot with differential gears. The medieval Chinese horologist and engineer Su Song (1020–1101 AD) incorporated an escapement mechanism into his astronomical clock tower two centuries before escapement devices were found in medieval European clocks. He also invented the world's first known endless power-transmitting chain drive.[4]

During the Islamic Golden Age (7th to 15th century), Muslim inventors made remarkable contributions in the field of mechanical technology. Al-Jazari, who was one of them, wrote his famous Book of Knowledge of Ingenious Mechanical Devices in 1206, and presented many mechanical designs. He is also considered to be the inventor of such mechanical devices which now form the very basic of mechanisms, such as the crankshaft and camshaft.[5]

During the 17th century, important breakthroughs in the foundations of mechanical engineering occurred in England. Sir Isaac Newton formulated Newton's Laws of Motion and developed Calculus, the mathematical basis of physics. Newton was reluctant to publish his works for years, but he was finally persuaded to do so by his colleagues, such as Sir Edmond Halley, much to the benefit of all mankind. Gottfried Wilhelm Leibniz is also credited with creating Calculus during this time period.

During the early 19th century industrial revolution, machine tools were developed in England, Germany, and Scotland. This allowed mechanical engineering to develop as a separate field within engineering. They brought with them manufacturing machines and the engines to power them.[6] The first British professional society of mechanical engineers was formed in 1847 Institution of Mechanical Engineers, thirty years after the civil engineers formed the first such professional society Institution of Civil Engineers.[7] On the European continent, Johann von Zimmermann (1820–1901) founded the first factory for grinding machines in Chemnitz, Germany in 1848.

In the United States, the American Society of Mechanical Engineers (ASME) was formed in 1880, becoming the third such professional engineering society, after the American Society of Civil Engineers (1852) and the American Institute of Mining Engineers (1871).[8] The first schools in the United States to offer an engineering education were the United States Military Academy in 1817, an institution now known as Norwich University in 1819, and Rensselaer Polytechnic Institute in 1825. Education in mechanical engineering has historically been based on a strong foundation in mathematics and science.[9]

Archimedes' screw was operated by hand and could efficiently raise water, as the animated red ball demonstrates.

Degrees in mechanical engineering are offered at various universities worldwide. In Ireland, Brazil, Philippines, Pakistan, China, Greece, Turkey, North America, South Asia, Nepal, India, Dominican Republic, Iran and the United Kingdom, mechanical engineering programs typically take four to five years of study and result in a Bachelor of Engineering (B.Eng. or B.E.), Bachelor of Science (B.Sc. or B.S.), Bachelor of Science Engineering (B.Sc.Eng.), Bachelor of Technology (B.Tech.), Bachelor of Mechanical Engineering (B.M.E.), or Bachelor of Applied Science (B.A.Sc.) degree, in or with emphasis in mechanical engineering. In Spain, Portugal and most of South America, where neither B.Sc. nor B.Tech. programs have been adopted, the formal name for the degree is "Mechanical Engineer", and the course work is based on five or six years of training. In Italy the course work is based on five years of education, and training, but in order to qualify as an Engineer one has to pass a state exam at the end of the course. In Greece, the coursework is based on a five-year curriculum and the requirement of a 'Diploma' Thesis, which upon completion a 'Diploma' is awarded rather than a B.Sc.

In Australia, mechanical engineering degrees are awarded as Bachelor of Engineering (Mechanical) or similar nomenclature[10] although there are an increasing number of specialisations. The degree takes four years of full-time study to achieve. To ensure quality in engineering degrees, Engineers Australia accredits engineering degrees awarded by Australian universities in accordance with the global Washington Accord. Before the degree can be awarded, the student must complete at least 3 months of on the job work experience in an engineering firm. Similar systems are also present in South Africa and are overseen by the Engineering Council of South Africa (ECSA).

In the United States, most undergraduate mechanical engineering programs are accredited by the Accreditation Board for Engineering and Technology (ABET) to ensure similar course requirements and standards among universities. The ABET web site lists 302 accredited mechanical engineering programs as of 11 March 2014.[11] Mechanical engineering programs in Canada are accredited by the Canadian Engineering Accreditation Board (CEAB),[12] and most other countries offering engineering degrees have similar accreditation societies.

In India, to become an engineer, one needs to have an engineering degree like a B.Tech or B.E or have a diploma in engineering or by completing a course in an engineering trade like fitter from the Industrial Training Institute (ITIs) to receive a "ITI Trade Certificate" and also have to pass the All India Trade Test (AITT) with an engineering trade conducted by the National Council of Vocational Training (NCVT) by which one is awarded a "National Trade Certificate". Similar systems are used in Nepal.

Some mechanical engineers go on to pursue a postgraduate degree such as a Master of Engineering, Master of Technology, Master of Science, Master of Engineering Management (M.Eng.Mgt. or M.E.M.), a Doctor of Philosophy in engineering (Eng.D. or Ph.D.) or an engineer's degree. The master's and engineer's degrees may or may not include research. The Doctor of Philosophy includes a significant research component and is often viewed as the entry point to academia.[13] The Engineer's degree exists at a few institutions at an intermediate level between the master's degree and the doctorate.

Standards set by each country's accreditation society are intended to provide uniformity in fundamental subject material, promote competence among graduating engineers, and to maintain confidence in the engineering profession as a whole. Engineering programs in the U.S., for example, are required by ABET to show that their students can "work professionally in both thermal and mechanical systems areas."[14] The specific courses required to graduate, however, may differ from program to program. Universities and Institutes of technology will often combine multiple subjects into a single class or split a subject into multiple classes, depending on the faculty available and the university's major area(s) of research.

The fundamental subjects of mechanical engineering usually include:

Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, physics, chemical engineering, civil engineering, and electrical engineering. All mechanical engineering programs include multiple semesters of mathematical classes including calculus, and advanced mathematical concepts including differential equations, partial differential equations, linear algebra, abstract algebra, and differential geometry, among others.

In addition to the core mechanical engineering curriculum, many mechanical engineering programs offer more specialized programs and classes, such as control systems, robotics, transport and logistics, cryogenics, fuel technology, automotive engineering, biomechanics, vibration, optics and others, if a separate department does not exist for these subjects.[17]

Most mechanical engineering programs also require varying amounts of research or community projects to gain practical problem-solving experience. In the United States it is common for mechanical engineering students to complete one or more internships while studying, though this is not typically mandated by the university. Cooperative education is another option. Future work skills[18] research puts demand on study components that feed student's creativity and innovation.[19]

Engineers may seek license by a state, provincial, or national government. The purpose of this process is to ensure that engineers possess the necessary technical knowledge, real-world experience, and knowledge of the local legal system to practice engineering at a professional level. Once certified, the engineer is given the title of Professional Engineer (in the United States, Canada, Japan, South Korea, Bangladesh and South Africa), Chartered Engineer (in the United Kingdom, Ireland, India and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand) or European Engineer (much of the European Union), or Professional Engineer in Philippines and Pakistan.

In the U.S., to become a licensed Professional Engineer (PE), an engineer must pass the comprehensive FE (Fundamentals of Engineering) exam, work a minimum of 4 years as an Engineering Intern (EI) or Engineer-in-Training (EIT), and pass the "Principles and Practice" or PE (Practicing Engineer or Professional Engineer) exams. The requirements and steps of this process are set forth by the National Council of Examiners for Engineering and Surveying (NCEES), a composed of engineering and land surveying licensing boards representing all U.S. states and territories.

In the UK, current graduates require a BEng plus an appropriate master's degree or an integrated MEng degree, a minimum of 4 years post graduate on the job competency development, and a peer reviewed project report in the candidates specialty area in order to become a Chartered Mechanical Engineer (CEng, MIMechE) through the Institution of Mechanical Engineers. CEng MIMechE can also be obtained via an examination route administered by the City and Guilds of London Institute.

In most developed countries, certain engineering tasks, such as the design of bridges, electric power plants, and chemical plants, must be approved by a professional engineer or a chartered engineer. "Only a licensed engineer, for instance, may prepare, sign, seal and submit engineering plans and drawings to a public authority for approval, or to seal engineering work for public and private clients."[20] This requirement can be written into state and provincial legislation, such as in the Canadian provinces, for example the Ontario or Quebec's Engineer Act.[21]

In other countries, such as Australia, and the UK, no such legislation exists; however, practically all certifying bodies maintain a code of ethics independent of legislation, that they expect all members to abide by or risk expulsion.[22]

Further information: FE Exam, Professional Engineer, Incorporated Engineer, and Washington Accord

Mechanical engineers research, design, develop, build, and test mechanical and thermal devices, including tools, engines, and machines.

Mechanical engineers typically do the following:

Mechanical engineers design and oversee the manufacturing of many products ranging from medical devices to new batteries. They also design power-producing machines such as electric generators, internal combustion engines, and steam and gas turbines as well as power-using machines, such as refrigeration and air-conditioning systems.

Like other engineers, mechanical engineers use computers to help create and analyze designs, run simulations and test how a machine is likely to work.[23]

The total number of engineers employed in the U.S. in 2015 was roughly 1.6 million. Of these, 278,340 were mechanical engineers (17.28%), the largest discipline by size.[24] In 2012, the median annual income of mechanical engineers in the U.S. workforce was $80,580. The median income was highest when working for the government ($92,030), and lowest in education ($57,090).[25] In 2014, the total number of mechanical engineering jobs was projected to grow 5% over the next decade.[26] As of 2009, the average starting salary was $58,800 with a bachelor's degree.[27]

An oblique view of a four-cylinder inline crankshaft with pistons

Many mechanical engineering companies, especially those in industrialized nations, have begun to incorporate computer-aided engineering (CAE) programs into their existing design and analysis processes, including 2D and 3D solid modeling computer-aided design (CAD). This method has many benefits, including easier and more exhaustive visualization of products, the ability to create virtual assemblies of parts, and the ease of use in designing mating interfaces and tolerances.

Other CAE programs commonly used by mechanical engineers include product lifecycle management (PLM) tools and analysis tools used to perform complex simulations. Analysis tools may be used to predict product response to expected loads, including fatigue life and manufacturability. These tools include finite element analysis (FEA), computational fluid dynamics (CFD), and computer-aided manufacturing (CAM).

Using CAE programs, a mechanical design team can quickly and cheaply iterate the design process to develop a product that better meets cost, performance, and other constraints. No physical prototype need be created until the design nears completion, allowing hundreds or thousands of designs to be evaluated, instead of a relative few. In addition, CAE analysis programs can model complicated physical phenomena which cannot be solved by hand, such as viscoelasticity, complex contact between mating parts, or non-Newtonian flows.

As mechanical engineering begins to merge with other disciplines, as seen in mechatronics, multidisciplinary design optimization (MDO) is being used with other CAE programs to automate and improve the iterative design process. MDO tools wrap around existing CAE processes, allowing product evaluation to continue even after the analyst goes home for the day. They also utilize sophisticated optimization algorithms to more intelligently explore possible designs, often finding better, innovative solutions to difficult multidisciplinary design problems.

The field of mechanical engineering can be thought of as a collection of many mechanical engineering science disciplines. Several of these subdisciplines which are typically taught at the undergraduate level are listed below, with a brief explanation and the most common application of each. Some of these subdisciplines are unique to mechanical engineering, while others are a combination of mechanical engineering and one or more other disciplines. Most work that a mechanical engineer does uses skills and techniques from several of these subdisciplines, as well as specialized subdisciplines. Specialized subdisciplines, as used in this article, are more likely to be the subject of graduate studies or on-the-job training than undergraduate research. Several specialized subdisciplines are discussed in this section.

Mohr's circle, a common tool to study stresses in a mechanical element Main article: Mechanics

Mechanics is, in the most general sense, the study of forces and their effect upon matter. Typically, engineering mechanics is used to analyze and predict the acceleration and deformation (both elastic and plastic) of objects under known forces (also called loads) or stresses. Subdisciplines of mechanics include

Mechanical engineers typically use mechanics in the design or analysis phases of engineering. If the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. Dynamics might be used when designing the car's engine, to evaluate the forces in the pistons and cams as the engine cycles. Mechanics of materials might be used to choose appropriate materials for the frame and engine. Fluid mechanics might be used to design a ventilation system for the vehicle (see HVAC), or to design the intake system for the engine.

Training FMS with learning robot SCORBOT-ER 4u, workbench CNC Mill and CNC Lathe Main articles: Mechatronics and Robotics

Mechatronics is a combination of mechanics and electronics. It is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid systems. In this way, machines can be automated through the use of electric motors, servo-mechanisms, and other electrical systems in conjunction with special software. A common example of a mechatronics system is a CD-ROM drive. Mechanical systems open and close the drive, spin the CD and move the laser, while an optical system reads the data on the CD and converts it to bits. Integrated software controls the process and communicates the contents of the CD to the computer.

Robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. These robots may be of any shape and size, but all are preprogrammed and interact physically with the world. To create a robot, an engineer typically employs kinematics (to determine the robot's range of motion) and mechanics (to determine the stresses within the robot).

Robots are used extensively in industrial engineering. They allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. Many companies employ assembly lines of robots, especially in Automotive Industries and some factories are so robotized that they can run by themselves. Outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. Robots are also sold for various residential applications, from recreation to domestic applications.

Main articles: Structural analysis and Failure analysis

Structural analysis is the branch of mechanical engineering (and also civil engineering) devoted to examining why and how objects fail and to fix the objects and their performance. Structural failures occur in two general modes: static failure, and fatigue failure. Static structural failure occurs when, upon being loaded (having a force applied) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. Fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. Fatigue failure occurs because of imperfections in the object: a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle (propagation) until the crack is large enough to cause ultimate failure.

Failure is not simply defined as when a part breaks, however; it is defined as when a part does not operate as intended. Some systems, such as the perforated top sections of some plastic bags, are designed to break. If these systems do not break, failure analysis might be employed to determine the cause.

Structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure. Engineers often use online documents and books such as those published by ASM[29] to aid them in determining the type of failure and possible causes.

Structural analysis may be used in the office when designing parts, in the field to analyze failed parts, or in laboratories where parts might undergo controlled failure tests.

Main article: Thermodynamics

Thermodynamics is an applied science used in several branches of engineering, including mechanical and chemical engineering. At its simplest, thermodynamics is the study of energy, its use and transformation through a system. Typically, engineering thermodynamics is concerned with changing energy from one form to another. As an example, automotive engines convert chemical energy (enthalpy) from the fuel into heat, and then into mechanical work that eventually turns the wheels.

Thermodynamics principles are used by mechanical engineers in the fields of heat transfer, thermofluids, and energy conversion. Mechanical engineers use thermo-science to design engines and power plants, heating, ventilation, and air-conditioning (HVAC) systems, heat exchangers, heat sinks, radiators, refrigeration, insulation, and others.

A CAD model of a mechanical double seal Main articles: Technical drawing and CNC

Drafting or technical drawing is the means by which mechanical engineers design products and create instructions for manufacturing parts. A technical drawing can be a computer model or hand-drawn schematic showing all the dimensions necessary to manufacture a part, as well as assembly notes, a list of required materials, and other pertinent information. A U.S. mechanical engineer or skilled worker who creates technical drawings may be referred to as a drafter or draftsman. Drafting has historically been a two-dimensional process, but computer-aided design (CAD) programs now allow the designer to create in three dimensions.

Instructions for manufacturing a part must be fed to the necessary machinery, either manually, through programmed instructions, or through the use of a computer-aided manufacturing (CAM) or combined CAD/CAM program. Optionally, an engineer may also manually manufacture a part using the technical drawings, but this is becoming an increasing rarity, with the advent of computer numerically controlled (CNC) manufacturing. Engineers primarily manually manufacture parts in the areas of applied spray coatings, finishes, and other processes that cannot economically or practically be done by a machine.

Drafting is used in nearly every subdiscipline of mechanical engineering, and by many other branches of engineering and architecture. Three-dimensional models created using CAD software are also commonly used in finite element analysis (FEA) and computational fluid dynamics (CFD).

Mechanical engineers are constantly pushing the boundaries of what is physically possible in order to produce safer, cheaper, and more efficient machines and mechanical systems. Some technologies at the cutting edge of mechanical engineering are listed below (see also exploratory engineering).

Micron-scale mechanical components such as springs, gears, fluidic and heat transfer devices are fabricated from a variety of substrate materials such as silicon, glass and polymers like SU8. Examples of MEMS components are the accelerometers that are used as car airbag sensors, modern cell phones, gyroscopes for precise positioning and microfluidic devices used in biomedical applications.

Main article: Friction stir welding

Friction stir welding, a new type of welding, was discovered in 1991 by The Welding Institute (TWI). The innovative steady state (non-fusion) welding technique joins materials previously un-weldable, including several aluminum alloys. It plays an important role in the future construction of airplanes, potentially replacing rivets. Current uses of this technology to date include welding the seams of the aluminum main Space Shuttle external tank, Orion Crew Vehicle test article, Boeing Delta II and Delta IV Expendable Launch Vehicles and the SpaceX Falcon 1 rocket, armor plating for amphibious assault ships, and welding the wings and fuselage panels of the new Eclipse 500 aircraft from Eclipse Aviation among an increasingly growing pool of uses.[30][31][32]

Composite cloth consisting of woven carbon fiber Main article: Composite material

Composites or composite materials are a combination of materials which provide different physical characteristics than either material separately. Composite material research within mechanical engineering typically focuses on designing (and, subsequently, finding applications for) stronger or more rigid materials while attempting to reduce weight, susceptibility to corrosion, and other undesirable factors. Carbon fiber reinforced composites, for instance, have been used in such diverse applications as spacecraft and fishing rods.

Main article: Mechatronics

Mechatronics is the synergistic combination of mechanical engineering, electronic engineering, and software engineering. The purpose of this interdisciplinary engineering field is the study of automation from an engineering perspective and serves the purposes of controlling advanced hybrid systems.

Main article: Nanotechnology

At the smallest scales, mechanical engineering becomes nanotechnology—one speculative goal of which is to create a molecular assembler to build molecules and materials via mechanosynthesis. For now that goal remains within exploratory engineering. Areas of current mechanical engineering research in nanotechnology include nanofilters,[33] nanofilms,[34] and nanostructures,[35] among others.

See also: Picotechnology Main article: Finite element analysis

This field is not new, as the basis of Finite Element Analysis (FEA) or Finite Element Method (FEM) dates back to 1941. But the evolution of computers has made FEA/FEM a viable option for analysis of structural problems. Many commercial codes such as ANSYS, NASTRAN, and ABAQUS are widely used in industry for research and the design of components. Some 3D modeling and CAD software packages have added FEA modules. In the recent times, cloud simulation platforms like SimScale are becoming more common.

Other techniques such as finite difference method (FDM) and finite-volume method (FVM) are employed to solve problems relating heat and mass transfer, fluid flows, fluid surface interaction, etc. In recent years meshfree methods like the smoothed particle hydrodynamics are gaining popularity in case of solving problems involving complex geometries, free surfaces, moving boundaries, and adaptive refinement.[citation needed]

Main article: Biomechanics

Biomechanics is the application of mechanical principles to biological systems, such as humans, animals, plants, organs, and cells.[36] Biomechanics also aids in creating prosthetic limbs and artificial organs for humans.

Biomechanics is closely related to engineering, because it often uses traditional engineering sciences to analyse biological systems. Some simple applications of Newtonian mechanics and/or materials sciences can supply correct approximations to the mechanics of many biological systems.

Over the past decade the Finite element method (FEM) has also entered the Biomedical sector highlighting further engineering aspects of Biomechanics. FEM has since then established itself as an alternative to in vivo surgical assessment and gained the wide acceptance of academia. The main advantage of Computational Biomechanics lies in its ability to determine the endo-anatomical response of an anatomy, without being subject to ethical restrictions.[37] This has led FE modelling to the point of becoming ubiquitous in several fields of Biomechanics while several projects have even adopted an open source philosophy (e.g. BioSpine).

Main article: Computational fluid dynamics

Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows. Computers are used to perform the calculations required to simulate the interaction of liquids and gases with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is performed using a wind tunnel with the final validation coming in full-scale testing, e.g. flight tests.

Main article: Acoustical engineering

Acoustical engineering is one of many other sub disciplines of mechanical engineering and is the application of acoustics. Acoustical engineering is the study of Sound and Vibration. These engineers work effectively to reduce noise pollution in mechanical devices and in buildings by soundproofing or removing sources of unwanted noise. The study of acoustics can range from designing a more efficient hearing aid, microphone, headphone, or recording studio to enhancing the sound quality of an orchestra hall. Acoustical engineering also deals with the vibration of different mechanical systems.[38]

Manufacturing engineering, Aerospace engineering and Automotive engineering are sometimes grouped with mechanical engineering. A bachelor's degree in these areas will typically have a difference of a few specialized classes.

China Shipping Development (SEHK: 1138, SSE: 600026) is a Chinese shipping company with its headquarters in Shanghai. The company is listed on the Shanghai Stock Exchange and the Hong Kong Stock Exchange.

The company produces, pursues and sells as a shipping company ships worldwide. China Shipping Group Company, founded on the 1 July 1997, is the holding company of China Shipping Development. Among the rest, the companies China Shipping Container Lines und China Shipping Haisheng also belong to the Parent company. The main business focus of the company involves coastal, ocean and Yangtze River cargo transportation, ship leasing, cargo forwarding and cargo transport agency, purchase and sale of ships, repair and development of containers, ship spare parts purchase and sale agency, consultancy and transfer of shipping technology.[1]



Best Website Desinging Companies in India are as follows:-


  •      1.       http://troikatech.co/
    2.       http://brandlocking.in/
    3.       http://leadscart.in/
    4.       http://godwinpintoandcompany.com/
    5.       http://webdesignmumbai.review/
    6.       http://webdevelopmentmumbai.trade/
    7.       http://wordpresswebsites.co.in
    8.       http://seoservicesindia.net.in/
    9.       http://priusmedia.in
    10.   http://godwinpintoandcompany.com/
    11.   http://clearperceptionscounselling.com/
    12.   http://gmatcoachingclasses.online/
    13.   http://troikatechbusinesses.com/
    14.   http://troikaconsultants.com/
    15.   http://webdesignmumbai.trade/
    16.   http://webdesignmumbai.trade/
    17.   http://troikatechservices.in/
    18.   http://brandlocking.com/wp-admin
    19.   http://kubber.in/
    20.   http://silveroakvilla.com/
    21.   http://igcsecoachingclasses.online/
    22.   http://priusmedia.in/
    23.   http://troikatechbusinesses.com/
    2.       http://brandlocking.in/
    3.       http://leadscart.in/
    4.       http://godwinpintoandcompany.com/
    5.       http://webdesignmumbai.review/
    6.       http://webdevelopmentmumbai.trade/
    7.       http://wordpresswebsites.co.in
    8.       http://seoservicesindia.net.in/
    9.       http://priusmedia.in
    10.   http://godwinpintoandcompany.com/
    11.   http://clearperceptionscounselling.com/
    12.   http://gmatcoachingclasses.online/
    13.   http://troikatechbusinesses.com/
    14.   http://troikaconsultants.com/
    15.   http://webdesignmumbai.trade/
    16.   http://webdesignmumbai.trade/
    17.   http://troikatechservices.in/
    18.   http://brandlocking.com/wp-admin
    19.   http://kubber.in/
    20.   http://silveroakvilla.com/
    21.   http://igcsecoachingclasses.online/
    22.   http://priusmedia.in/
    23.   http://troikatechbusinesses.com/

    Call them for Best offers India and International.

Read More

Contact Details

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station, 

Opp. TMT Bus Stop, 

Thane – 401107

NGO Website Designing 


Troika Tech Services


WordPress Development Company in Mumbai



No comments:

Post a Comment